Vai al contenuto principale
Oggetto:
Oggetto:

STRUMENTI MATEMATICI PER LA CHIMICA

Oggetto:

Mathematical Tools for Chemistry

Oggetto:

Anno accademico 2024/2025

Codice attività didattica
MFN1672
Docente
Alessandro Erba (Titolare)
Corso di studio
Chimica e Tecnologie Chimiche
Anno
3° anno
Periodo
Secondo periodo
Tipologia
A scelta dello studente
Crediti/Valenza
4
SSD attività didattica
CHIM/02 - chimica fisica
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Orale
Propedeutico a
L'insegnamento non costituisce una propedeuticità obbligatoria per nessun insegnamento successivo. Gli argomenti trattati sono utili per insegnamenti successivi di Machine Learning (specificamente: "Machine Learning and its Application to Chemistry and Materials Science"), di modellistica chimica, chimica teorica e computazionale.
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Approfondire le conoscenze matematiche alla base dei concetti di probabilità e analisi statistica. Acquisire o consolidare conoscenze di carattere formale. Acquisire conoscenze di base sulla programmazione scientifica in generale ed il linguaggio Python in particolare.

Inoltre, questo Corso fornisce le basi necessarie alla fruizione dell'insegnamento "Machine Learning and its Application to Chemistry and Materials Science" (un Corso opzionale della magistrale in Materials Science che può essere scelto anche da studenti di Chimica nella magistrale):

https://www.materials-science.unito.it/do/corsi.pl/Show?_id=129c

 

Enhance the students' mathematical skills on which probability and statistical analysis are based. To gain or strengthen formal skills. To learn some basic concepts of scientific programming in general and of the Python programming language in particular.

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza e Capacità di Comprensione

Conoscenze di vari strumenti formali di carattere generale. In particolare, conoscenze relative ad aspetti formali legati alla Teoria delle Probabilità ed alla Analisi Statistica. Conoscenze di base di programmazione scientifica (in Python). 

Comprensione della sintassi di base di un linguaggio di programmazione come il Python.

 

Capacità di Applicare Conoscenza e Comprensione

 

Capacità di scrivere semplici programmi in Python per analisi numerica e grafica di dati. Capacità di applicare strumenti di analisi statistica di base a dati.

 

Aim of this course is consolidating the knowledge of a series of fundamental formal tools of wide applicability in Physical Chemistry. In particular, the Course addresses formal aspects of the Theory of Probabilities and Statistical Analysis. Finally, the course aims at providing with an introduction to scientific programming (in Python)

 

Oggetto:

Programma

 

Primo Modulo (16 ore) [lezioni/esercitazioni in aula al portatile]

 

Introduzione alla programmazione scientifica ed al linguaggio di programmazione Python. Il linguaggio di programmazione, il codice sorgente, la fase di compilazione/interpretazione e la fase di esecuzione. Le variabili (numeriche, logiche, stringhe, ...) e l'uso della memoria del calcolatore. Richiami di rappresentazione binaria per numeri interi e reali. La singola e la doppia precisione. Gli operatori (aritmetici, logici, di appartenenza, di confronto, di assegnazione). Le funzioni matematiche. Le iterazioni ed il processo decisionale. I/O. L'uso degli array di dati (con il modulo NumPy). La preparazione di grafici con la libreria MatPlotLib. La libreria SciPy per il calcolo scientifico in Python.

 

Secondo Modulo (24 ore)[lezioni frontali con uso del portatile per esercizi di programmazione]

Fondamenti di Teoria della Probabilità e Statistica. Il concetto e le proprietà delle probabilità. Lo spazio di campionamento associato ad una prova casuale. Le variabili casuali. Il valor medio di una variabile casuale e le sue proprietà. La varianza di una variabile casuale e le sue proprietà. La covarianza di due variabili casuali. La correlazione tra variabili in statistica. La correlazione spuria. I momenti semplici e centrali di una variabile casuale e la funzione generatrice dei momenti. La disuguaglianza di Cebyshev e la Legge dei Grandi Numeri.

Altre proprietà delle distribuzioni di probabilità (mediana, moda, percentili, ...). I processi di Bernoulli e la distribuzione discreta di probabilità binomiale. La distribuzione di probabilità continua normale o Gaussiana. Il teorema del limite centrale. Esperimento numerico al calcolatore sul teorema del limite centrale. Legame tra distribuzione binomiale e normale. Stima dei parametri di un modello statistico e valutazione della precisione nella stima dei parametri.

 

Come detto, questo Corso fornisce le basi (sia statistiche che di programmazione) necessarie alla fruizione dell'insegnamento "Machine Learning and its Application to Chemistry and Materials Science" (un Corso opzionale della magistrale in Materials Science che può essere scelto anche da studenti di Chimica nella magistrale):

https://www.materials-science.unito.it/do/corsi.pl/Show?_id=129c

 

 

 

 

 

First Part (16 hours) [Lessons/Hands-on sessions]

Elements of scientific programming (in Python). Introduction to programming, theSpider IDE, variables, operators, decision-making, iterations, plotting.

 

Second Part (24 hours) [Lessons/Hands-on sessions]

Elements of Probability Theory and Statistics. Binomial and Gaussian probability densities, mean value, variance, momenta of a distribution. Central limit theorem. Parameter estimate of a model, Least Square method, Likelyhood law and assessment of the parameter estimate accuracy.


 

 

Oggetto:

Modalità di insegnamento

 

Le lezioni si svolgeranno in presenza.

Le studentesse e gli studenti sono invitati a iscrivervi all'insegnamento su Campusnet per facilitare le comunicazioni via e-mail.

Lezioni frontali su contenuti formali e modulo centrale di esercitazione al computer (ogni studentessa/studente sul proprio portatile) su introduzione alla programmazione scientifica. 

Frontal lessons on formal topics with a central module of hands-on practical sessions with the computer (each student on his laptop) about an introduction to scientific programming.

Should the coronavirus emergency last, classes will be held on-line in live mode as scheduled in the time-table.

Oggetto:

Modalità di verifica dell'apprendimento

Esame orale (con valutazione in trentesimi) in cui le studentesse e gli studenti dovranno dimostrare di aver acquisito i necessari strumenti formali e lessicali per poter esporre le proprietà e svolgere le dimostrazioni affrontate nell'insegnamento. Prima dell'orale, le studentesse e gli studenti dovranno risolvere dei semplici esercizi di programmazione che verranno loro assegnati. La risoluzione verrà discussa durante l'orale.

 

Oral exam, where the student will have to demonstrate his ability in using formal and lexical tools to derive and present correctly some of the demonstrations discussed during the Course. Before the oral, the student will be asked to solve some simple programming exercises that will be discussed during the oral.

 

Testi consigliati e bibliografia

Oggetto:

Appunti del docente

Lecture notes



Oggetto:

Note

 

Frequenza fortemente consigliata.

Gli/le studenti/esse con DSA o disabilità, sono pregati di prendere visione delle modalità di supporto (https://www.unito.it/servizi/lo-studio/studenti-e-studentesse-con-disabilita) e di accoglienza (https://www.unito.it/accoglienza-studenti-con-disabilita-e-dsa) di Ateneo, ed in particolare delle procedure necessarie per il supporto in sede d’esame (https://www.unito.it/servizi/lo-studio/studenti-e-studentesse-con-disturbi-specifici-di-apprendimento-dsa/supporto)

 

Registrazione
  • Aperta
    Apertura registrazione
    09/09/2024 alle ore 09:00
    Chiusura registrazione
    20/06/2025 alle ore 23:55
    Oggetto:
    Ultimo aggiornamento: 10/09/2024 14:34
    Location: https://chimicaetecnologie.campusnet.unito.it/robots.html
    Non cliccare qui!